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Abstract. Defect energies in two- and three-dimensional classical crystals correlate with the 
shear modulus p ;  in turn this relates the melting temperature T. intimately top .  Thus, a 
model is first proposed for the shear modulus for two-dimensional Wigner crystals. The 
melting temperature is then determined from the Koslerlitz-Thouless melting criterion 
or fmm an anharmonic instability inherent in the model. The relative positions of these 
transitions depend on the model parameters used. The calculation is generalized to include 
(a) zero-point motion which isdominant in the quantum limit and (b) the effect ofa magnetic 
field, For the high field case, this modelling allows T, to be plotted versus the Landau-level 
filling factor Y. The predictions of the model are thereby brought into contact with the 
experiments of Andrei et 01 and Glattli er a/ which have been interpreted as evidence for a 
magnetically induced Wigner solid (haws) in the electron assembly in a GaAsIAIGaAs 
heterojunction in strong magnetic fields. The model exhibits some of the features observed 
experimentally. 

1. Introduction 

In classical monatomic crystals, correlations have long been known to exist between 
melting temperature T,,,, vacancy formation energy E, and elastic moduli. Some under- 
standing of these empirical correlations has been afforded by (a) statistical mechanical 
models at elevated temperatures, appropriate say to condensed argon (Bhatia and 
March 1984) and (b) current models of force fields including many-body contributions 
in metals like Cu (Johnson 1988, see also March 1989). In case (b), Johnson hasstressed 
that the highest correlation among elastic constants and E, is via the shear modulus .u. 
While the above relates to three dimensions, the well-known Kosterlitz-Thouless (1973, 
1978) transition in two-dimensional classical crystals is driven by the shear modulus and 
the thermal unbinding of dislocation pairs. 

Here the focus is on 2D Wigner electron crystallization, with and without magnetic 
fields. In zero magnetic field B there is a large body of work to date: we note in particular 
two very relevant studies. One is the classical limit of the phonon spectrum, worked out 
by Bonsall and Maradudin (1977). This provides a first-principles basis for scaling the 
model calculations made in the present paper for the shear modulus. The second is the 
quantum Monte Carlo study of Ceperley (1978), in which he calculated the mean 
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interelectronic separation rw, relative to the Bohr radius, at which the transition from 
electron liquid to ZD Wigner electron crystal occurs, in the quantal limit at T = 0. He 
found thevaluer, = 33whichagainisamostvaluablepieceofinformationinthepresent 
modelling. Turning to non-zero magnetic fields, which is in fact the prime motivation 
for the present study, the magnetic-field-assisted Wigner electron crystallization pro- 
posed by Durkan et af (1968) has been invoked by Andrei etal( l988)  and Glattli e taf  
(1990) as an explanation of their experiments on ZD electrons. These workers demon- 
strated the sudden onset of a new electron-phonon mode at low frequencies in the 
electron assembly in a GaAs/AIGaAs heterojunction in a high magnetic field that they 
suggested wasa lingerprint of the magnetically induced Wigner solid (MIWS). They were 
thus able to map out the melting curve of the proposed Wigner solid as a function of the 
Landau-level filling factor v = nh/eB. Once such a plot was made there remained only 
a rather weak residual dependence on the carrier density, n,  related to the mean 
interelectronic separation, rO. by 

While there have been a number of attempts to calculate the melting curve of the 
Wigner crystal for B = 0 (Ferraz er a1 1978, 1979; Nagara er af  1987, see also March 
1988), it is only recently that much attention has been focused on melting in the presence 
of an applied magnetic field (Elliott and KIeppmann 1975, Saitoh 1988, Lea and March 
1990). This is therefore one focal point of the present work: to propose a model to 
predict the melting curve in a magnetic field. 

The outline of the paper is then as follows. In section 2, a model calculation is 
proposed of the shear modulus p of a 2~ Wigner electron crystal. The idea behind the 
calculation is motivated by extending the approach of Bonsai1 and Maradudin (1977), 
which applied in the h i t  of complete electron localization. Section 3 is then concerned 
with self-consistent solutions for three limiting cases of the model: (i) the classical limit, 
(ii) the quantum limit where zero-point motion dominates and (iii) the high magnetic 
field regime. The relationship to experiment, both the heterojunction data referred to 
above for the high magnetic field case and the quantum Monte Carlo result for zero 
magnetic field, is also given in section 3. A summary is given in section 4, where some 
proposals for further experiments that would be of interest are put forward. 

2. Half-width of the electron density profile related to shear modulus 

March and Tosi (1985) have considered the effective electron density of a localized 
Wigner oscillator in a magnetic field B of arbitrary strength. This can be viewed as the 
Einstein model of a Wigner crystal in an applied magnetic field. As well as for the ground 
state, the effects of harmonic restoring force, magnetic field and temperature, T ,  still 
contrive to leave a Gaussian profile for the electron density y ( r )  at each site, which we 
shall simply write in the form 

y(r)  = Cexp(-r2/,l*). (2.1) 
Here it isevident that thequantity ,l measuresthe half-widthofthelocalizedelectron 

density profile; this is related to a convenient dimensionless parameter U which we shall 
take as the root-mean-square shear strain below. It is clear that these two quantities are 
intimately linked. For zero-point Debye shear waves the mean-square shear strain, or 
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differential shear displacement, (020) = 4(u:)/3r?j, where ( U : )  is the mean-square dis- 
placement, resolvedalonganycrystalaxis. However,forthermalphonons, (u2,)diverges 
logarithmically as the sample size increases, while U: does not, and is a natural 
vibrational parameter for a ZD crystal. 

What we emphasize is that the distribution in space of the electron density in the 
Wigner crystal can be characterized through the whole parameter range of magnetic 
field B, temperature T and carrier density n by this half-width A. Though this can be 
calculated within the framework of the Einstein model, we shall in fact use the shear 
strain parameter u, and model its dependence on the above parameters in the present 
approach. The Einstein results for A then can be regarded as providing one useful 
guideline in achieving satisfactory modelling. 

2.1. Modelling of the shear modulus as function ofshear slrain parameter 

An essential first step in setting up a model to calculate the phase diagram of the 2D 
Wigner crystal for a wide selection of parameter values is to relate the shear modulus p 
to the dimensionless parameter u. 

As starting point, we note that Bonsall and Maradudin (1977) gave the Madelung 
energy of any ZD crystalline array of localized electrons. Their results were later con- 
firmed by Borwein et a1 (1988). The ground state is a triangular crystal (one electron per 
lattice point on a ZD hexagonal Bravais lattice) with energy -1.1061 e2/ro per electron. 
Figure 1 displays the energies E I ( a )  and E,( a) for a simple shear strain a applied along 
the (112) and (lOi) directions, respectively. For small strains, Et and Ez are close to the 
harmonic energy 

Eo(@) = -1.1061ez/r0 + hpoxr&Y2 

&(a) = [-1.1013 - O.0048cos(fixa)]e2/ro (2.3) 

E1(a) +&(a) = 2Eo(a). (2.4) 

(2.2) 

where po = 0,044 2 / r :  is the shear modulus at T = 0 for a classical electron crystal. For 
large strains, there is both anisotropy and anharmonicity. To a very good approximation 

with E,(@) > Eo(a) with 

The effect of this anharmonicity is to cause the shear modulus to depend on the 
thermal motion and zero-point motion of the electrons. We assume that this gives a 
Gaussian distribution? exp(-a*/2u2) of resolved shear strain along any direction with 
variance u2. Hence the mean energy for an additional infinitesimal strain a1 can be 
written as 

= 
E(cu,) = I-, E(a + a,)exp(-az/2u2) d n  (2.5) 

The effective shear modolus is then given by a2Z?/aa:, as a, tends to zero. Substituting 
the expressions for E, and E2 in (2.5) we obtain 

P ? ( u ) = P l ( ~ ) / F o  =exp(-DaZ) P T  (0) = 2 - P T (0) (2.6) 
where D = 3x2/2 = 14.8 while p r  and (1; are the normalized shear moduli for simple 

t In theappendix,somemotivationforthisassumptionispmvidedbytakingthesitedensityy tomoverigidly 
as the sites move under shear. This argument relates o to the half-width of the site density. 
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Figure 1. The Coulomb energy per electron, in 
units of $,'ra, for a ZD triangular electron crystal 
as a function of a static shear strain (Y parallg 
to the (115) direction (energy E,) and the (101) 
direction (energy E& The parabola E,showsthe 
harmonic energy variation lor the zero-tem- 
perarure shear modulus, The calculations were 
made using the expressions given by Bonsall and 
Maradudin (1977). 

I 

Figure 2. The reduced shear moduli p' and p : ,  
calculated from (3.2) as a function of reduced 
temperature I. The points on the lines show the 
anharmonic stability limit. The broken C U N ~ S  
show the unstable solutions of (3.2). The full line 
p,shows the theoreticallocur of the Kosterlitz- 
Thouless transition. The crosses are the resulls 
from computer simulations by Morf(1979), while 
the squares are the experimental data of Deville 
et a1 (1984) for electrons on liquid helium. 

shear strains along the (11% and (103 directions, respectively. A static shear stress on 
the crystal produces both types of strain and a resultant modulus p * ,  isotropic by 
symmetry, is given by 

l/P* = l/ZP: -F 1/2P,* P Y 4 = P : ( U ) P ; ( 4  (2.7) 

The next stage is to calculate the mean-square shear produced by the propagating 
shear modes, angular frequency w(q)  and amplitude U,, in the crystal. The mean-square 
component of displacement of each electron, mass m, along any direction is given by 

where 

E =  (fiw,/2)coth(fio,/2kBT) (2.9) 

is the mean energy per mode. The mean-square shear strain, resolved along any direc- 
tion, is 

(2.10) 

for pure shear modes, and will be isotropic by symmetry in a triangular crystal with 
contributions from all shear modes. 
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3. Instabilities and melting 

The purpose of this section is to convert the result (2.6) relating reduced shear modulus 
p to half-width U into potentially observable predictions. First, let us consider the 
classical limit in zero field. 

3.1. Clmsicai limit 

Specifically, the above calculation of the scaled shear modulus will first be employed to 
construct the temperature dependence of the shear modulusp and to exhibit the insta- 
bility of the lattice. A phonon model leads to a relation of the form 

U' =Ak~T/p(u)  (3.1) 
A being a constant and of course, model dependent. 

A value of A can be obtained from a simplified Debye model. An unscreened w 
plasma is incompressible in the long-wavelength Limit, so we include only the shear 
modes (which have propagation and polarizationdirections in the plane of the electrons). 
The shear modes propagating along the two symmetry directions are: w 1  = c,q where 
cf = p l / m n  for q 1  parallel to (lOi) and polarization along (ll?), and w 2  = c2q with 
c$ = p2/mn for q2 parallel to (117) and polarization along (lOi). Integrating (2.10) up 
to the Debye wave vector qo = 2/ro leads to 

u2 = (kBT/2zr?,)(1/2pl + 1/2p2) = keT/&rgp = O.OZSSf/p*(u) (3.2) 
where tis the temperature normalized to the Kosterlitz-Thouless melting temperature 
T,, = e2/rormkB, where I-,,, has beendetermined experimentally to he 127(Deville 1988) 
for electrons on Liquid helium. 

Equation (3.2) has been solved self-consistently to obtain the shear modulus p*(t) 
as afunction of temperature. The results are shown, along with plots of p 1; (r) and p * ( t )  
in figure 2. Several interesting points emerge from this admittedly simple model. First, 
the shear mode with q 1  parallel to (lor), which corresponds to the close-packed lines of 
electrons sliding past each other, softens as t increases while the q 2  mode stiffens. It is 
to be noted that .UT([) decreases linearly with fa t  low temperatures. The total shear 
modulus p * ( f )  also decreases to an anharmonic instability at p' = 0.5, t = 1.46 and U = 
0.29. For U > 0.29, (3.2) still has a solution (shown as a broken curve in figure 2) but the 
crystal will then be unstable. The Kosterlitz-Thouless transition occurs at a temperature 
T, such that 

T ,  = pa2/4nkB (3.3) 
where a is the lattice spacing. This transition will therefore occur when the reduced shear 
modulus pKT = 0.62 as shown by the full line in figure 2. This intersects the p * ( t )  graph 
for this model at r = 1.22. Also shown in figure 2 are measurements of p *  by Deville er 
a1 (1984), together with the computer simulation results of Morf (1979). The shear 
modulus is found to decrease linearly at low temperature and this has been shown to be 
due to anharmonicity in detailed calculations by Chang and Maki (1983). The rapid 
decrease in p near the transition found by Morf has been ascribed to renormalization 
due to thermally excited dislocations. 

Note that the shear modulus and the anharmonic instability in the present model can 
be scaled in temperature by adjusting the absolute value of A.  Hence the relative 
positions of the Kosterlitz-Thouless transition and the anharmonic instability can be 
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'As 
Figure 3. The reduced shear moduli v*  and p f ,  
calculated from (3.4) as a function of l/r, at T = 
0. The points on the lines show the anharmonic 
stability limit. The broken curva show the 
unstable solutions oi(3.2).  

Figure 4. The model phase diagram of the ZD 
electron crystal inzero fieldon a I Y ~ ~ S U S  l/r,plot. 
The full curve shows the locus of the Kosterlitz- 
Thouless transition while the broken curve is the 
locusoi the anharmonic instability. Note the pre- 
dictedchangein thenatureofthe transitionasthe 
electron density increases. 

vaned and can occur very close together: with reference to figure 2 an increase in U by 
only 20% above the Debye model would bring the upper curve into accord with the 
available data. The two transitions are closely linked in that dislocations are produced 
by slip along the (11% direction which corresponds to the softened q, shear mode. It is 
tempting to associate the region between the Kosterlitz-Thouless transition and the 
anharmonic instability with the postulated hexatic phase (Nelsen and Halperin 1979). 

3.2. Quantum iimil 
Equation (2 .6)  can also be applied to the quantum crystal at T =  0 in zero field. In this 
case U* is due to zero-point shear strain and the two-mode Debye model gives 

08 = (1/3=)(1/2< + 1 / 2 G )  = (0,45/<)(1/m + l/m) (3.4) 

where r, = ro/aB and a, = h'/m2 is the Bohr radius. This can be solved for p* and pr 
as functions of l / r , ,  the results being shown in figure 3. As zero-point motion increases, 
the shear modulus falls until the crystal becomes unstable at p* = 0.16 and r, = rw = 
125. There are no experimental results on this transition, which is the transition Wigner 
originally proposed (Wigner 1934,1938). though in two dimensions, but Ceperley has 
shown by computer simulation that rw = 33. Hence the quantum crystal is more stable 
than our simple model suggests. The notorious sensitivity of rw to the model chosen is 
clearfrom the table ofCare andMarch (1975). TheDebyemodelprobablyoverestimates 
the zero-point motion. Siringo et al (1991) have also shown that the force constant 
between disks of electronic charge is greater than for point charges. Finally this model 
does not consider any specifically quantum effects which may result from the overlap of 
the individual electronic wave functions. Nonetheless a possible mechanism for ZD 
Wigner quantum melting is clearly indicated, as an anharmonic instability. 
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Figure 5. The mc phase diagram of the ZD 
electron crystal in a magnetic field on a f versus Y 

plot. The full curve show the locus of the Kos- 
terlitr-Thoule!;s transition while the brokencurve 
isthe locusof the anharmonic instability. The data 
points are from Andrei er al(1988) and Glattli et 
al(1990). 

It is interesting to follow this instability and the K-Ttransition at finite temperature, 
as r, decreases from infinity in the classical limit, using the expression for 02, sup- 
plemented by thermal contributions. The loci of these transitions on the t-l/rs plane is 
shown in figure 4. At rs = m the K-Ttransition occurs below the instability, as already 
discussed. But as r, decreases the two transitions merge until, for r, < 400, the K-T 
transition no longer occurs. In the present model the transition is an anharmonic 
instability for 125 < r, < 400. 

3.3. The magnetically induced Wigner solid (MIWS) 

In the quantum limit of high density, when r, = 0, it is well established theoretically that 
an infinite magnetic field can suppress the zero-point motion and induce a classical D 
electron crystal. As the field is reduced, or as the Landau-level filling factor U increases, 
the cyclotron motion of individual electrons increases with a mean-square displacement 
along any direction (2) = I ; ,  where l B  = (h/eB)"'is the magnetic length. If we assume 
that this displacement produces both longitudinal and shear strains then the resolved 
shear strain can be written as 

oi = O.O285t/p*(u) + Gv (3.5) 

where the first term is taken to be the same as for the classical crystal in zero field. 
Fourier transforming the cyclotron motion into components of longitudinal and shear 
displacements and integrating to find the mean-square shear strain gives G = 0.5 in the 
limit lB < ro. Taking G = 0.5, (3.5) is solved self-consistently. It is found that as U 
increases the K-T transition and the instability temperature decrease as shown in figure 
5. For the model parameters used here, the instability lies above the K-Ttransition at 
all fields, but the relative position could well be field dependent. 

This phase diagram has some of the features of the experimental data of Andrei et 
a1 (1988) and Glattli et a1 (1990). However, it now seems possible that there may be 
regions of ZD electron liquid phases interspersed with solid phases (Jiang et a1 1990, 
Buhmannetall991) and that the phasediagramcalculated herecould form an'envelope' 
for the solid regions. On this interpretation such a liquid phase is seen in the data close 
to a filling factor U = 0.192, Also the three points at v > 0.3, originally excluded by 
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Andrei et a1 from their analysis, could represent a solid phase in this region. It is known 
from thezero-magnetic-field treatments of melting, already referred to above, that near 
T = 0 the phase diagram willdependsensitively on the natureof the low-lyingexcitations 
in the two phases and these are not carefully treated in the present model. It is to be 
noted that Lozovik eta1 (1985) have exposed an anharmonic instability as the Landau 
level factor increases beyond a critical value. 

M J Lea and N H March 

4. Discussion and summary 

That there is an intimate relation between the dimensionless parameter ucharacterizing 
the shear strain and the electron density profile (2.1) has already been emphasized. 
Some work on deviations of this profile from Gaussian form is available from the study 
of Gann etal (1979). Related to this, and for the ground-state in zero magnetic field, the 
3D density functional calculationsof Senatore and Pastore (1990) offer a way of checking 
the Gaussian structure factor p(k) ,  by extracting the Fourier components in the periodic 
densityin the Wignercrystalat thereciprocallatticevectorsll,, Equallyimportant would 
be a study of the way that shear affected the localized density profile. Underlying the 
present work is the model in which the ‘localized Gaussian blobs’ move rigidly as the 
lattice sites are shifted by a ‘frozen phonon’. This could be tested, at least in principle, 
by the approach of Senatore and Pastore (1990), who refer to both BCC and FCC lattices. 
As pointed out by Perrin etal (1985), it is possible by continuous deformation via a body- 
centred tetragonal phase to pass from BCC to FCC; each periodic lattice could be explored 
to check the way in which the ‘localized’ blobs on the Wigner sites have to be deformed 
3s a crystal is sheared. In connection with atomic crystals, the model of localized blobs 
moving without deformation is the analogue of the rigid-ion model, which in turn is 
equivalent to a pair force field. 

Such refinements will no doubt mean that the simple modelling of p in terms of U in 
(2.6) will have to be transcended. Nevertheless, this modelling suggests that it will be of 
considerable interest toexplore whether Bragg reflection studies ofsome sort are feasible 
on a heterojunction. If the phonon mode found by Andrei et al(l988) and by Glattli et 
al (1990) is the lower hybrid magnetophonon mode derived from the shear mode, this 
would confirm that one is dealing with a Wigner solid; not necessarily with long-range 
crystalline order. So this would be the first objective of Bragg reflection studies: to 
demonstrate crystallinity. The second would be to test the prediction of the present 
study of an intimate connection between shear modulus and scattering factors. 

Afurtherpointofconsiderableinterestistorecognize that amoregeneral theoretical 
model will not merely cover a range of filling factors to U > 0.4, but will need to relate 
Wigner crystal theory to Laughlin-like electron liquid states as well as, possibly, the Hall 
crystal postulated by Halperin et al(1986). This should then reveal what will no doubt 
be a close connection between the regionof parameter space treated in the present work 
and integral and fractional quantum Hall effects. Already, a re-entrant phase diagram 
is emerging from experimental studies (Jiang et ai 1990, Buhmann er a1 1991) with a 
series of interspersed liquid and solid phases as U increases. The ‘envelope’ of these 
phases seems to be close to the melting line in figure 5. The host material may also have 
a strong iduence on the phase diagram of the ID electrons. For instance, Kohler et a1 
(1986) have suggested that a phonon-mediated transverse charge-density wave state in 
a quantizing magnetic field may lead to Wigner crystallization over the whole range of 
magnetic quantization 
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Finally, to summarize, the main conclusions of the model presented here are: 
(i) There are two possible instabilities: one arising directly from anharmonicity in 

thesimplemodelpresented; the otherisa Kosterlitz-Thouless transition. As the physical 
parameters are varied, it is possible to find ‘cross-over’ between the instabilities. 

(ii) The quantum limit T = 0 in zero field is clearly sensitive to (a)  tunnelling, which 
is not incorporated in the present model; it is related to Wigner oscillator wave-function 
overlap and (h) possible ring exchange, relating to magnetism, as discussed by March 
and Tosi (1980). 

(ii) At the present stage of development of magnetic-field-assisted Wigner crys- 
tallization, the simple model presented here seems particularly useful. The main features 
of the phase diagram established experimentally by Andrei eta! (1988) and by Glattli et 
a2 (1990) are compatible with the present predictions of Wigner crystallization in the 
high-field regime, except near T = 0 (see figure 5 )  where more careful treatment of the 
low-lyingexcitations inthe liquid and thecrystal phasesisclearlycalledfor(forB = Osee 
Ferraz et aI 1978,1979). Subsequent experiments on non-linear electrical conductivity 
provide further strong evidence in support of pinned Wigner crystals over a substantial 
range of electric field, followed eventually by ‘sliding’ of the Wigner crystallites. 

Appendix: Energy stored in electric field as a function of strain 

The purpose of this appendix is to provide motivation from an approximate electronic 
theory for the phenomenological treatment of the shear modulus given in section 2.1. 
For convenience of presentation, we specifically treat a 3~ Wigner electron crystal in 
zero magnetic field. 

The starting point is an equilibrium crystal with localized electron densities y ( r )  
centred on lattice sites I ,  the unit cell being denoted by Q,. When shear is applied, we 
denote the new sites by I + Aland the volume of integration is through a unit cell denoted 
by Ql+ 

If the total ground-state electron density in the crystal without shear is denoted by 
p(r, Z) then we assume 

though the density is held constant in the shear. 

I 

Evidently, in a ‘rigid blobs’ model, analogous to the lattice dynamical rigid-ion model 
ofnormalmetalcrystalsbuiltfromelectronsandgranularions, thedensityin thesheared 
lattice is given by 

where Alis not necessarily constant through the unit cell. The density change Ap(r) can 
then he written, to first-order in the (assumed small) site displacement, AZ, 

A p  = p(r ,  I + AZ) - p(r,  Z) = AI-  grad p(r, 1). (A3) 
Next letusconsidertheenergystoredintheelectricfieldE(r). Byasimilar argument, 

the change in energy per electron due to shear is approximately 

8zAZshear = 1 [ E Z ( r ,  I + Al) - E*(r,  Z)] d r  (A41 

where the integration is taken over the common volume of the two unit cells involved. 
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Writing the integrand as (E,+& t E,) (El+ar - E,), one has again for A1 small the 
approximate form 2EiAl. grad 8). 

M J Lea and N H March 

At this stage we invoke Poisson's equation 

div E = 4xAp (A51 
and after some manipulation, one has for the interesting term for present purposes of 
O(AZ2), the form 

- 1 EiAZ- (r/r)Ap dr. 

The important conclusion here is that, when the localized density y(r)  = Nexp(-9/Iz), 
the grad p term involved in Ap contains a term of the form exp(-?/Az)2r/Az. This is 
plainly the term which is strongly dependent on the half-width, I, of the density profile; 
therefore in the remainder of the integrand in (A6) one use that the localized limit A 
tends to zero. Essentially then, this approximate microscopic theory provides a basis in 
electron theory for the phenomenological assumption embodied in (2.5) in the limit 
a, -P 0. The argument used there is to write, for a harmonic potential @, the result 

Energy = (k*) X distribution inx, 

orforageneralenergysuchascalculated by Bonsall andMaradudin (1977) anddisplayed 
in figure 1, k2 is replaced by E(x) .  The distribution in x written above has, in (2.5), 
Gaussian form with half-width U. The above treatment therefore crucially links electron 
density and the shear strain dimensionless parameter, U. 
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